1x EC-R3576PC FD
1x PSU
Large-Model Computer, AI Edge kit
Specifications | ||
Basic Specifications | SOC |
Rockchip RK3576 |
Octa-core 64-bit processor (4×A72 + 4×A53), up to 2.2GHz |
||
GPU |
G52 MC3 @ 1GHz, supporting OpenGL ES 1.1/2.0/3.2, OpenCL 2.0, Vulkan 1.1 Built-in high-performance 2D acceleration hardware |
|
NPU |
6 TOPS NPU, supporting INT4/8/16/FP16/BF16/TF32 mixed operations |
|
VPU |
Decoding: 8K@30fps/4K@120fps: H.265/HEVC, VP9, AVS2, AV1, 4K@60fps: H.264/AVC Encoding: 4K@60fps: H.265/HEVC, H.264/AVC |
|
RAM |
LPDDR4/LPDDR4x (4GB/8GB optional) |
|
Storage |
eMMC (16GB/32GB/64GB/128GB/256GB optional), UFS2.0 (optional) |
|
Storage Expansion |
1 * M.2 (2242 PCIe NVMe/SATA SSD expansion ) (internal device), 1 * TF card slot |
|
Power |
DC 12V (5.5mm * 2.1mm, 12V~24V wide input voltage) |
|
OS |
Android14、Linux OS、Buildroot+QT |
|
Software Support |
・ The private deployment of ultra-large-scale parameter models under the Transformer architecture, such as Gemma-2B, LlaMa2-7B, ChatGLM3-6B, Qwen1.5-1.8B, and more ・ Traditional network architectures such as CNN, RNN, and LSTM; a variety of deep learning frameworks include TensorFlow, PyTorch, MXNet, PaddlePaddle, ONNX, and Darknet ・ Custom operator development ・ Docker container management technology |
|
Power Consumption |
Normal: 1.2W(12V/100mA),Max: 6W(12V/500mA),Min: 0.096W(12V/8mA) |
|
Size |
116mm * 105.2mm * 31.5mm |
|
Weight |
≈0.43kg |
|
Environment |
Operating temperature: -20℃- 60℃ Storage humidity: 10%~90%RH (non-condensing) |
|
Interfaces | Network |
1 * Gigabit Ethernet (1000 Mbps / RJ45), 2.4GHz/5GHz dual-band WiFi (802.11a/b/g/n/ac), Bluetooth 5.0 |
Video Input |
1 * MIPI CSI DPHY(30Pin-0.5mm, 1*4 lanes/2*2 lanes) |
|
Video Output |
1 * HDMI2.1(4K@120fps)、1 * DP1.4 (4K@120fps) |
|
Watchdog |
External watchdog |
|
USB |
1 * USB3.0、1 * USB2.0 |
|
Expansion Interface |
1 * Type-C (OTG/DP1.4), 1 * 3.5mm Audio jack (supporting MIC recording, CTIA standard) |